Novel synthesis of 1-aryl-3-chloro-3-phenylazetidin-2-one-4-spiro-5'-4'chloro-5'*H*-1',2',3'-dithiazoles and bis(2-oxo-azetidin-4-yl) trisulfides[†]

Moon-Kook Jeon, Kyongtae Kim*a and Yung Ja Park^b

^a School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea.
E-mail: kkim@plaza.snu.ac.kr; Fax: 82 2874 8858; Tel: 82 2880 6636
^b Department of Chemistry, Sook Myung Women's University, Seoul 140-724, Korea

Department of Chemistry, sook Myung women's Oniversity, seout 140-724, Kore

Received (in Cambridge, UK) 3rd May 2001, Accepted 13th June 2001 First published as an Advance Article on the web 12th July 2001

Treatment of 5-arylimino-4-chloro-5*H*-1,2,3-dithiazoles with *in situ* generated (chloro)phenylketene in CH₂Cl₂ at rt gave azetidin-2-one-4-spiro-5'-(1',2',3'-dithiazoles) as major products, which reacted with primary and secondary alkylamines in CH₂Cl₂ at rt to afford bis(2-oxo-azetidin-4-yl) trisulfides in good to excellent yields.

Azetidin-2-ones have been one of the most attractive classes of organic compounds due to their potential biological applications.¹ Numerous methods for the synthesis of azetidin-2-ones are known and these are well-documented in the literature.¹ In connection with our ongoing project for exploring the potential synthetic utility of 5-arylimino-4-chloro-5*H*-1,2,3-dithiazoles **1**,² we are interested in investigating the reactivity of the N=C-5 imine bond of **1** toward cycloaddition reactions with a ketene because a [2 + 2] cycloaddition with a ketene would give azetidin-2-one-4-spiro-5'-(1',2',3'-dithiazoles) **2**, which, to the best of our knowledge, has never been reported. Compound **2** is

of interest with respect to the stereochemistry at C-3 and C-4. In addition, it may be utilized as a precursor for the synthesis of hitherto unknown azetidin-2-ones created by cleaving the bond between S-1' and S-2' with nucleophiles, as shown in the ready conversion of 1 to diverse products.³ With this in mind, 1 was treated with various ketenes which were generated *in situ*. This paper describes the preliminary results we have obtained.

For the generation of a ketene, a method involving acid chlorides and Et_3N^4 in CH_2Cl_2 at rt was employed since neither reagent reacts with **1** under conditions for the generation of ketenes. When Et_3N (1.22–2.87 mmol) in CH_2Cl_2 (30 ml) was added dropwise to a mixture of **1b** (Ar = 4-MeOC₆H₄) (0.773–0.935 mmol) and acid chlorides **3** (1.20–2.89 mmol) in CH_2Cl_2 (20 ml) at rt, followed by stirring for 0.5–1 h, only a small amount of **4a** (Y = Cl), **4c** (Y = MeO), and **4e** (Y = AcO), which comprised a single isomer in view of the ¹H and

† Electronic supplementary information (ESI) available: spectral and analytical data for 2 and 4–8. See http://www.rsc.org/suppdata/cc/b1/ b103974c/

¹³C NMR spectroscopic data, and most of the unreacted **1b** were isolated (Scheme 1).

Compounds **4a**, **4c**, and **4e**, derivatives of 5-(phenylcarbamoyl)methylidene-5*H*-1,2,3-dithiazole,⁵ are all new. The (*E*)-stereochemistry of **4** was assigned based on the IR absorptions of the carbonyl group at 1603, 1613, and 1619 cm⁻¹, respectively, which suggests the possible interaction of the carbonyl oxygen with electron deficient S-1.² Surprisingly, the reactions of **1** with 2-chloro-2-phenylacetyl chloride (**3f**) under the foregoing conditions gave the desired compound **2** (R¹ = Cl, R² = Ph) in good to excellent yields (Scheme 2). Yields and mps of **2** are summarized in Table 1.

The structures of **2** were determined based on spectroscopic (¹H and ¹³C NMR, IR, MS) and analytical data. The X-ray single crystal structure of $2d^+_{\pm}$ (Fig. 1) clearly shows *cis*-stereochemistry with *S* and *R* configurations at C-3 and C-4, respectively. The *cis*-stereochemistry of **2** may be ascribed to the avoidance of severe electronic repulsions between lone pair electrons on the two chlorine atoms at C-3 and C-4'.

Treatment of **2** (0.23–0.38 mmol) in CH₂Cl₂ (10 ml) with a slightly excessive molar amount of primary and secondary alkylamines at rt gave bis(2-oxo-azetidin-4-yl) trisulfides **5** along with alkylamino 2-oxo-azetidin-4-yl disulfides **6** and a considerable amount of unreacted **2** (Scheme 2). However, by employing 4 molar equivalents of alkylamines, **5** were obtained as major products along with **6** and a small amount of isothiazol-3-ones **7**, which were obtained only from the reactions of **2c** and

Table 1 Yields and mps of 2^a

Compound	Ar	Yield ^b (%)	Mp ^{c/°} C 142–146 (dec.)		
2a	4-MeO-2-MeOC ₆ H ₃	97			
2b	4-MeOC ₆ H ₄	96	122–124		
2c	$4-MeC_6H_4$	95	73–76		
2d	$4-ClC_6H_4$	86	147–149		
2e	4-MeCOC ₆ H ₄	74	156-160 (dec.)		
2 f	$4-O_2NC_6H_4$	44	139-144 (dec.)		

^{*a*} Time for dropwise addition of Et₃N: 2–3 h; time stirred: 0.5–1 h. ^{*b*} Isolated yields. ^{*c*} Recrystallized from a mixture of *n*-hexane and CH₂Cl₂.

Fig. 1 ORTEP drawing of (3*S*,4*R*)-3-chloro-1-(4-chlorophenyl)-3-phenyl-azetidin-2-one-4-spiro-5'-(4'-chloro-5'*H*-1',2',3'-dithiazole) **2d**.

Communicat

					Yield ^a (%)					
Entry	Compound	Ar	R ³ R ⁴ NH	Time (t/h))	5		6		7
1	2b	4-MeOC ₆ H ₄	<i>n</i> -PrNH ₂	0.7	b	93 (93–98) ^c				
2	2b	4-MeOC ₆ H ₄	t-BuNH ₂	42	b	77	b	7		
3	2c	$4-\text{MeC}_6H_4$	<i>n</i> -PrNH ₂	0.7	c	80 (103–107) ^c	c	4		
4	2c	4-MeC ₆ H ₄	t-BuNH ₂	4	с	77	d	6		
5	2c	4-MeC ₆ H ₄	<i>n</i> -Pr ₂ NH	2	c	61	e	16	c	$6^{(170-171)^d}$
6	2c	4-MeC ₆ H ₄	PhNH ₂	24^{b}						()
7	2d	$4-ClC_6H_4$	n-PrNH ₂	0.2	d	69 (110–115) ^c	f	10	d	19 $(181-182)^d$
8	2d	$4-ClC_6H_4$	t-BuNH ₂	16	d	73	g	8		· · ·
9	2f	$4-O_2NOC_6H_4$	<i>n</i> -PrNH ₂	0.2	e	90 (160–165) ^d	9			

a Isolated yields. b Reflux time. c Recrystallized from a mixture of CH₂Cl₂ and EtOH. d Recrystallized from a mixture of n-hexane and CH₂Cl₂.

2d. Trisulfides of azetidin-2-ones have never been reported despite the existence of numerous methods for the synthesis of a variety of trisulfides.⁶ Compounds **6** and **7** are also new. The stereochemistry at C-3 and C-4 of **5** and **6** are believed to be intact. Reaction times and yields of trisulfides **5**, disulfides **6**, and isothiazol-3-ones **7** are summarized in Table 2.

Scheme 2 Reagents and conditions: i, Et_3N , CH_2Cl_2 , rt; ii, R^3R^4NH , CH_2Cl_2 , rt.

Table 2 shows that **2** react with both primary (entries 1–4 and 7–9) and secondary (entry 5) alkylamines to give **5** but not with arylamine even at reflux temperature over a prolonged reaction time (entry 6). Among primary alkylamines, *i.e.* n-PrNH₂ and t-BuNH₂, the reactions with n-PrNH₂ proceeded more rapidly than those with t-BuNH₂, presumably due to the steric effect of a bulky *tert*-butyl group.

For a mechanistic study, a mixture of equal molar amounts of **2b** (0.253 mmol) and **2c** (0.253 mmol) was treated with n-PrNH₂ (2.07 mmol) for 3 h under the foregoing conditions. From the reaction were isolated 5b (44%), 5c (46%), and unsymmetrical trisulfide 8 (87%) (Scheme 3). The isolation of unsymmetrical trisulfide 8 coupled with its yield, which is approximately twice of that of either 5b or 5c, indicates that trisulfides 5 are formed via an intermolecular reaction. Furthermore, when the mixture of 2b (0.070 mmol) and 2c (0.069 mmol) was treated with a large excess of n-PrNH₂ (1.1 mmol) for 24 h under the same conditions, isothiazol-3-ones 7b (58%) and 7c (62%) along with unknown mixtures were obtained. No trisulfides 5b and 5c were detected. The results indicate that 2 are converted to 7 via 5 in the presence of a large excess of *n*-PrNH₂ over a prolonged reaction time. In addition, the fact that 7c (78%) together with an unknown mixture as obtained from the reaction of disulfide 6c (Ar = 4-MeC₆H₄, R³ = H, R^4 = *n*-Pr) (0.11 mmol) with *n*-PrNH₂ (0.49 mmol) in CH₂Cl₂ for 26 h indicates that 6 also act as intermediates for the formation of 7.

In conclusion we have found that 5-arylimino-4-chloro-5H-1,2,3-dithiazoles reacted with (chloro)phenylketene in CH₂Cl₂ at rt to give spiro compound **2**, which undergoes a decomposition reaction in the presence of primary and secondary alkylamines in CH₂Cl₂ at rt, giving bis(2-oxo-azetidin-4-yl) trisulfides as major products. Study of the mechanism and scope of the reactions is in progress.

Scheme 3 Reagents and conditions: i, n-PrNH₂ (8 equiv.), CH₂Cl₂, rt, 3 h; ii, n-PrNH₂, (8 equiv.), CH₂Cl₂, rt, 24 h; iii, n-PrNH₂ (4 equiv.), CH₂Cl₂, rt, 26 h.

This work was supported by a Korea Research Foundation Grant (DP-0261).

Notes and references

‡ *Crystal data* for **2d**: C₁₆H₉Cl₃N₂OS₂, M = 415.72, monoclinic, a = 16.946(2), b = 7.4460(5), c = 15.026(3) Å, $\beta = 113.080(10)^{\circ}$, U = 1744.2(4) Å³, T = 293 K, *P2/k*, Z = 4, μ (Mo-Kα) = 0.770 mm⁻¹, $\lambda = 0.71070$ Å, 3189 reflections measured, 3057 unique ($R_{int} = 0.0088$) which were used in all calculations. Final *R* indices [$I > 2\sigma(I)$]: R1 = 0.0455, wR2 = 0.1156. CCDC 165871. See http://www.rsc.org/suppdata/cc/b1/b103974c/ for crystallographic data in CIF or other format.

Spectral data for **2d**: ν (neat)/cm⁻¹ 3056, 1782, 1490, 1442, 1366, 1158, 1117, 1109, 1051, 1010; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.36 (s, 4H), 7.38-7.44 (m, 3H), 7.59 (br, 2H); $\delta_{\rm C}$ (75 MHz, CDCl₃) 82.9, 102.1, 119.2, 126.6, 129.2, 129.8, 130.2, 131.8, 132.9, 133.1, 142.0, 160.3.

- D. E. Davies and R. C. Storr, in *Comprehensive Heterocyclic Chemistry*, A. R. Katritzky and C. W. Rees, ed., Pergamon, Oxford, 1984, vol. 7, pp. 237–362; N. De Kimpe, in *Comprehensive Heterocyclic Chemistry II*, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, ed., Pergamon, Oxford, 1996, vol. 1B. pp. 507–720.
- 2 M.-K. Jeon and K. Kim, *Tetrahedron*, 1999, **55**, 9651; H.-S. Lee, Y.-G. Chang and K. Kim, *J. Heterocycl. Chem.*, 1998, **35**, 659.
- 3 K. Kim, Sulfur Rep., 1998, 21, 147.
- 4 R. S. Ward, in *The Chemistry of ketenes, allenes and related compounds*, Part 1, S. Patai, ed., John Wiley and Sons, New York, 1980, ch. 7, pp. 223–277.
- 5 Refer to ref. 2 for other 5-alkylidene-5H-1,2,3-dithiazoles.
- 6 B. D. Vineyard, J. Org. Chem., 1966, **31**, 601; H. Bohme and H.-P. Steudel, Liebigs Ann. Chem., 1969, **730**, 121; D. N. Harpp and A. Granata, Tetrahedron Lett., 1976, **35**, 3001; A. Banerji and G. P. Kalena, Tetrahedron Lett., 1980, **21**, 3003; A. L. Schroll and G. Barany, J. Org. Chem., 1986, **51**, 1866; G. Capozzi, A. Capperucci, A. Del'Innocenti, R. D. Duce and S. Menichetti, Tetrahedron Lett., 1989, **30**, 2991; M. Ghadimi and R. R. Hill, J. Chem. Soc., Chem. Commun., 1991, 903; G. Derbesy and D. N. Harpp, J. Org. Chem., 1986, **53**81; I. A. Abu-Yousef and D. N. Harpp, J. Org. Chem., 1998, **63**, 8654.